Differentiation:
Partial Differentiation

Suppose $f(x, y)$ is a function of two variables x and y.
The partial derivative of f with respect to x is written as $\frac{\partial f}{\partial x}$ or f_{x}.
This is found by differentiating f with respect to x, with y held constant.
Similarly, the partial derivative of f with respect to y is written as $\frac{\partial f}{\partial y}$ or f_{y}.
This is found by differentiating f with respect to y, with x held constant.

Examples

$$
\begin{array}{cl}
f(x, y)=x^{2}+y^{3}: & \left\{\begin{array}{l}
f_{x}=2 x+0=2 x, \text { since } y \text { is constant. } \\
f_{y}=0+3 y^{2}=3 y^{2}, \text { since } x \text { is constant. }
\end{array}\right. \\
f(x, y)=x^{2} y^{3}: & \left\{\begin{array}{l}
f_{x}=2 x y^{3}, \text { since } y \text { is constant. } \\
f_{y}=3 x^{2} y^{2}, \text { since } x \text { is constant. }
\end{array}\right. \\
f(x, y)=\log _{e}\left(1+x^{2} y\right):\left\{\begin{array}{l}
f_{x}=2 x y \cdot \frac{1}{1+x^{2} y}=\frac{2 x y}{1+x^{2} y}, \text { since } y \text { is constant. } \\
f_{y}=x^{2} \cdot \frac{1}{1+x^{2} y}=\frac{x^{2}}{1+x^{2} y}, \text { since } x \text { is constant. }
\end{array}\right. \\
f(x, y)=e^{2 x+y^{2}}:\left\{\begin{array}{l}
f_{x}=2 e^{2 x+y^{2}}, \text { since } y \text { is constant. } \\
f_{y}=2 y e^{2 x+y^{2}}, \text { since } x \text { is constant. }
\end{array}\right. \\
f(x, y)=x^{4} y^{5}-x^{2}+y^{2}:\left\{\begin{array}{l}
f_{x}=4 x^{3} y^{5}-2 x, \text { since } y \text { is constant. } \\
f_{y}=5 x^{4} y^{4}+2 y, \text { since } x \text { is constant. }
\end{array}\right.
\end{array}
$$

